Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomed Nanotechnol ; 17(3): 331-356, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33875070

RESUMO

CRISPR is a powerful gene editing tool for correcting disease-causing mutations. It is becoming more and more evident that CRISPR is a promising approach to treating human genetic diseases. The technologies for adding or removing genes have made significant advances over the past few years and have shown promising potential outcomes. In the current study, we mainly introduce the CRISPR/Cas system and there are several applications in the treatment of genetic diseases, particularly during embryo development.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Edição de Genes , Sistemas CRISPR-Cas/genética , Engenharia Genética , Genoma , Humanos
2.
Galen Med J ; 9: e1749, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34466585

RESUMO

BACKGROUND: Bromelain enhances anticancer impacts to chemotherapeutic agents. The question as to whether bromelain does promote in-vitro cytotoxic and proapoptotic effects of cisplatin on human prostatic carcinoma PC3 cell line was investigated. MATERIALS AND METHODS: PC3 (human prostatic carcinoma) cells were treated either single or in combination with bromelain and/or cisplatin. MTT, clonogenic assay, flow cytometry and real-time quantitative polymerase chain reaction were used to investigate cell viability, colony formation, proapoptotic potential and p53 gene expression, respectively. RESULTS: Cisplatin (IC10) combined with bromelain (IC40) significantly affected PC3 cell viability, inhibited colony formation, as well increased p53 proapoptotic gene expression compared to cisplatin single treatment. Nevertheless, bromelain-cisplatin chemoherbal combination did not display any additive proapoptotic effect compared to single treatments. CONCLUSION: Bromelain-cisplatin chemoherbal combination demonstrated synergistic in-vitro anticancer effect on human prostatic carcinoma cell line, PC3, that drastically reduced required cisplatin dose.

3.
Environ Int ; 122: 67-90, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30509511

RESUMO

Beyond vitamin D (VD) effect on bone homeostasis, numerous physiological functions in human health have been described for this versatile prohormone. In 2016, 95% of the world's population lived in areas where annual mean ambient particulate matter (<2.5 µm) levels exceeded the World Health Organization guideline value (Shaddick et al., 2018). On the other hand, industries disperse thousands of chemicals continually into the environment. Further, considerable fraction of populations are exposed to tobacco smoke. All of these may disrupt biochemical pathways and cause detrimental consequences, such as VD deficiency (VDD). In spite of the remarkable number of studies conducted on the role of some of the above mentioned exposures on VDD, the literature suffers from two main shortcomings: (1) an overview of the impacts of environmental exposures on the levels of main VD metabolites, and (2) credible engaged mechanisms in VDD because of those exposures. To summarize explanations for these unclear topics, we conducted the present review, using relevant keywords in the PubMed database, to investigate the adverse effects of exposure to air pollution, some environmental chemicals, and smoking on the VD metabolism, and incorporate relevant potential pathways disrupting VD endocrine system (VDES) leading to VDD. Air pollution may lead to the reduction of VD cutaneous production either directly by blocking ultraviolet B photons or indirectly by decreasing outdoor activity. Heavy metals may reduce VD serum levels by increasing renal tubular dysfunction, as well as downregulating the transcription of cytochrome P450 mixed-function oxidases (CYPs). Endocrine-disrupting chemicals (EDCs) may inhibit the activity and expression of CYPs, and indirectly cause VDD through weight gain and dysregulation of thyroid hormone, parathyroid hormone, and calcium homeostasis. Smoking through several pathways decreases serum 25(OH)D and 1,25(OH)2D levels, VD intake from diet, and the cutaneous production of VD through skin aging. In summary, disturbance in the cutaneous production of cholecalciferol, decreased intestinal intake of VD, the modulation of genes involved in VD homeostasis, and decreased local production of calcitriol in target tissues are the most likely mechanisms that involve in decreasing the serum VD levels.


Assuntos
Poluição do Ar/efeitos adversos , Material Particulado/toxicidade , Fumar/efeitos adversos , Deficiência de Vitamina D/induzido quimicamente , Vitamina D/sangue , Exposição Ambiental , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...